Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Feng-Ying Geng, Jian Xu, Hong-Fei Wu, Ren-Qing Gao and Hong-Xing Wang*

Department of Chemistry, College of Sciences, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail:
hongxing_wang@hotmail.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.029$
$w R$ factor $=0.068$
Data-to-parameter ratio $=14.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Chloro[2-\{1-[N-methyl- N -(4-methylbenzyl)-amino]ethyl\}ferrocenyl- $\kappa^{2} N, C^{1}$](triphenyl-phosphine- κ P) palladium(II)

In the title compound, $\left[\mathrm{FePd}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}\right) \mathrm{Cl}\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)\right]$, the $\mathrm{Pd}^{\mathrm{II}}$ atom is in a slightly distorted square-planar environment. The dihedral angle between the cyclopentadienyl rings of the ferrocenyl group is $0.6(1)^{\circ}$.

Comment

Cyclopalladation of N -donor ligands, especially those bearing a ferrocenylimino group, have been extensively studied due to their applications in organic synthesis, such as in the Heck reaction (Iyer \& Ramesh, 2000) and the Suzuki coupling reaction (Weissmann \& Milstein, 1999) etc. As part of our ongoing investigations of cyclometallations on tertiary ferrocenylamines (Wang et al., 2006), the title new compound, (I), has been synthesized and we report its crystal structure here.

In compound (I), atom Pt 1 is in a slightly distorted squareplanar environment, with a maximum deviation of 0.1490 (2) \AA for atom N 1 from the five-atom mean plane (defined by atoms Pd1, N1, Cl1, C1 and P1). The maximum deviation from the mean plane of the five-membered palladocycle is 0.1421 (2) \AA for atom N1. The dihedral angle between the two above-mentioned planes is $5.1(2)^{\circ}$.

Experimental

A solution of sodium tetrachloropalladate(II) ($150 \mathrm{mg}, 0.5 \mathrm{mmol}$) in methanol (15 ml) was added dropwise to a stirred solution of $[1-\{[\mathrm{N}-$ methyl- N-(4-methylbenzyl)]amino\}ethyl]ferrocene (175 mg , 0.5 mmol) and sodium acetate ($41 \mathrm{mg}, 0.5 \mathrm{mmol}$) in methanol $(20 \mathrm{ml})$. The mixture was stirred at room temperature for 4 h . Triphenylphosphine ($220 \mathrm{mg}, 0.8 \mathrm{mmol}$) was then added and the mixture was stirred for another 30 min . The solvent was removed in vacuo and the solid residue was recrystallized from anhydrous ethanol to obtain compound (I) (yield 68\%). Crystals of (I) were grown by slow evaporation of a dichloromethane solution at room temperature over a period of one week. Analysis, calculated for $\mathrm{C}_{39} \mathrm{H}_{39} \mathrm{ClFeNPPd}: \mathrm{C} 62.42$, H 5.24, N 1.87%; found: C 62.67 , H 4.98, N 1.99\%.

Received 14 July 2006
Accepted 18 July 2006

Crystal data

$\begin{aligned} & {\left[\begin{array}{l} {\left[\mathrm{FePd}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}\right) \mathrm{Cl}-\right.} \\ \left.\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)\right] \end{array}\right.} \end{aligned}$	$\begin{aligned} & \gamma=115.978(4)^{\circ} \\ & V=1651.0(10) \AA^{3} \end{aligned}$
$M_{r}=750.38$	$Z=2$
Triclinic, $P \overline{1}$	$D_{x}=1.509 \mathrm{Mg} \mathrm{m}^{-3}$
$a=10.305$ (3) \AA	Mo K α radiation
$b=10.681$ (4) \AA	$\mu=1.14 \mathrm{~mm}^{-1}$
$c=17.584$ (6) \AA	$T=293$ (2) K
$\alpha=92.012$ (5) ${ }^{\circ}$	Block, red
$\beta=105.451$ (4) ${ }^{\circ}$	$0.28 \times 0.22 \times 0.20 \mathrm{~mm}$

Data collection

Bruker APEXII CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.72, T_{\text {max }}=0.80$

Refinement

Refinement on F^{2}
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0354 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$ 。
$\Delta \rho_{\text {max }}=0.40 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.36 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right.$).

Pd1-C1	$1.990(3)$	$\mathrm{N} 1-\mathrm{C} 11$	$1.506(4)$
Pd1-N1	$2.244(2)$	$\mathrm{C} 1-\mathrm{C} 5$	$1.435(4)$
Pd1-P1	$2.2499(9)$	$\mathrm{C} 5-\mathrm{C} 11$	$1.503(4)$
$\mathrm{Pd} 1-\mathrm{Cl} 1$	$2.3858(10)$		
$\mathrm{C} 1-\mathrm{Pd} 1-\mathrm{N} 1$	$81.22(10)$	$\mathrm{P} 1-\mathrm{Pd} 1-\mathrm{Cl} 1$	$94.31(4)$
$\mathrm{C} 1-\mathrm{Pd} 1-\mathrm{P} 1$	$92.93(8)$	$\mathrm{C} 13-\mathrm{N} 1-\mathrm{Pd} 1$	$97.28(16)$
$\mathrm{N} 1-\mathrm{Pd} 1-\mathrm{P} 1$	$166.55(6)$	$\mathrm{C} 14-\mathrm{N} 1-\mathrm{Pd} 1$	$119.33(18)$
$\mathrm{C} 1-\mathrm{Pd} 1-\mathrm{Cl} 1$	$172.75(8)$	$\mathrm{C} 11-\mathrm{N} 1-\mathrm{Pd} 1$	$110.66(15)$
$\mathrm{N} 1-\mathrm{Pd} 1-\mathrm{Cl} 1$	$91.60(7)$		
$\mathrm{C} 1-\mathrm{Pd} 1-\mathrm{N} 1-\mathrm{C} 13$	$-98.44(18)$	$\mathrm{Cl} 1-\mathrm{Pd} 1-\mathrm{N} 1-\mathrm{C} 13$	$82.60(17)$
$\mathrm{P} 1-\mathrm{Pd} 1-\mathrm{N} 1-\mathrm{C} 13$	$-33.5(4)$	$\mathrm{P} 1-\mathrm{Pd} 1-\mathrm{N} 1-\mathrm{C} 11$	$82.4(3)$

All H atoms were initially located in a difference Fourier map. The methyl H atoms were then constrained to an ideal geometry, with $\mathrm{C}-$ H distances of $0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$, but each group was allowed to rotate freely about its $\mathrm{C}-\mathrm{C}$ bond. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Figure 1
The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 35% probability level. H atoms have been omitted for clarity.

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

This work was supported by the Natural Scientific Foundation of Tianjin City, China (Project No. 033609011) and the Opening Fund from the Ministry of Science and Technology, China.

References

Bruker (1998). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2003). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Iyer, S. \& Ramesh, C. (2000). Tetrahedron Lett. 41, 8981-8984.
Sheldrick, G. M. (1996). $S A D A B S$. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Wang, H.-X., Geng, F.-Y., Wu, H.-F., Xu, J. \& Gao, R.-Q. (2006). Acta Cryst. E62, m1485-m1486.
Weissmann, H. \& Milstein, D. (1999). Chem. Commun. pp. 1901-1902.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

